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Quasiperiodic forcing of coupled chaotic systems
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We study the manner in which the effect of quasiperiodic modulation is transmitted in a coupled nonlinear
dynamical system. A system of Rossler oscillators is considered, one of which is subject to driving, and the
dynamics of other oscillators which are, in effect, indirectly forced is observed. Strange nonchaotic dynamics
is known to arise only in quasiperiodically driven systems, and thus the transmitted effect is apparent when
such motion is seen in subsystems that are not directly modulated. We also find instances of imperfect phase
synchronization with forcing, where the system transits from one phase synchronized state to another, with
arbitrary phase slips. The stability of phase synchrony for arbitrary initial conditions with identical forcing is
observed as a general property of strange nonchaotic motion.
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I. INTRODUCTION

Among the diverse dynamical states encountered in the
study of nonlinear dynamical systems, strange nonchaotic
attractors (SNAs) that are created when there is quasiperiodic
driving [1] are of particular interest. These attractors are frac-
tal in structure, but the motion has negative or zero
Lyapunov exponents. SNAs are an example of transitional
dynamics, occurring between regimes of chaotic strange at-
tractors [2] and quasiperiodic tori that are neither strange nor
chaotic.

The focus in the present work is the dynamics of coupled
nonlinear oscillators when one of them is subject to external
quasiperiodic driving. Our interest is in understanding the
manner in which the effect of such driving is transmitted via
the coupling and the motivation arises from the fact that in a
variety of natural systems that are subject to forcing, the
modulation can be either direct, namely, when a given sys-
tem is itself subject to driving or indirect when it is coupled
to another system which is being externally modulated. For
instance, biological phenomena exhibit stability while being
intrinsically aperiodic [3]. The source of aperiodicity is not
always clear, raising the possibility that such behavior may
be caused by indirect modulation. Further, given the current
interest in networks of coupled dynamical systems [4], this
question is of particular importance.

Coupled nonlinear dynamical systems, even in the ab-
sence of external driving, display a range of interesting be-
havior that includes synchronization, hysteresis, and phase
locking [5,6]. While synchronization in its various forms is
common in coupled nonlinear systems [5-11], the phase syn-
chronization induced by external driving has not been stud-
ied in detail. This is important in view of potential applica-
tions to disciplines ranging from physics, chemistry, and
biology to medical sciences [12].

In this paper we examine the dynamics of modulated
coupled oscillator systems and analyze the dynamics of the
indirectly forced subsystem. The model system and our nu-
merical studies are discussed in Sec. II, where we also
present the different dynamical behaviors that are possible.
Although the present study focuses on Rossler oscillators,
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similar results can be obtained in other driven dissipative
dynamical systems as well. In Sec. III we discuss phase syn-
chronization and the effects of quasiperiodic forcing. It is
observed that when the strength of forcing is increased, long
temporal segment of perfect phase synchrony is replaced by
short synchronous segments separated by phase slips. In Sec.
IV we analyze the dynamics on strange nonchaotic attractors
for phase synchrony in a network of oscillators. The paper
concludes with a summary in Sec. V.

II. DYNAMICAL REGIMES

We consider two symmetrically and diffusively coupled
Rossler oscillators (distinguished by subscripts 1 and 2)

X ==y -z + €l -x),
vy =wx; +ay[1+f(cos r+cos Q1)],
Z1=b+z1(x;—0¢),
Xy == wyyr — 2o+ €(x; — x3),
Y2 = WoXs + ayy,

L=b+2(x-c), (1)

with one (system 1) being subject to quasiperiodic forcing.
The coupling constant is €, and the system parameters taken
are a=0.06, b=0.1, and ¢=14.0. The frequencies w;=0.99
and w,=0.95 are mismatched, making the interacting sub-
systems nonidentical. Modulation occurs through the term
f(cos t+cos Qr), where f is the amplitude and €
=(y5-1)/2 is the irrational frequency that makes the drive
quasiperiodic in time. The setup is depicted in Fig. 1.
Shown in Fig. 2 is a schematic phase diagram of the dy-
namical regimes as a function of the parameters f and €. The
separating curves of different regimes are based on numerics
(see Fig. 2 caption). The regions marked 1-T and 2-T denote
single- and double-band quasiperiodic tori respectively,
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FIG. 1. Coupling scheme in the present model. The two oscil-
lators are symmetrically and bidirectionally coupled through one of
the variables, here x, while one of the oscillators is subject to qua-
siperiodic driving through a different variable, here y.

while C1 and C2 correspond to the different regions of cha-
otic dynamics. SNAs are found in the shaded regions; the
symbols TC, GF1, GF2, and I indicate that these are formed
by different “routes,” namely, torus collision [13], fractaliza-
tion [14], and intermittency [15,16]. These routes (strange to
nonstrange attractors) can be deduced via visual examination
of the Poincaré sections (see Fig. 4—identification details are
reported in Ref. [1]). The labels 1 and 2 indicate that the
SNAs or chaotic attractors in different regions have differing

morphologies.
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FIG. 2. Phase diagram (schematic) for the coupled Rossler sys-
tem, Eq. (1) as a function of f and €. Double band and single band
quasiperiodic torus regions are marked 2-T and 1-T, respectively,
while C1 and C2 correspond to chaotic dynamics. SNAs occur in
the shaded regions TC, GF1 and GF2, and I denoting the different
routes by which they are formed as discussed in the text. This figure
is generated by calculating the Lyapunov exponents by taking a grid
of 100X 100 points in the parameter space. The boundaries of cha-
otic regimes are determined from the A=0 contour while non-
strange to strange regimes are deduced via examination of Poincaré
sections—see the text for details.
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FIG. 3. The two largest nonzero Lyapunov exponents as a func-
tion of forcing amplitude f for €e=0.25. This selected range of forc-
ing strength contains all the dynamical states as shown in Fig. 2.

The dynamical states and the transitions between them
can be identified by examination of the spectrum of
Lyapunov exponents. The present system has a total of six
exponents, the largest two of which are shown as a function
of f for fixed € in Fig. 3.

We examine the dynamics of the oscillator that is indi-
rectly forced, namely, subsystem 2. Poincaré sections in the
[y,, y=mod(z,27)] plane are shown in Fig. 4 in different
regions of parameter space. The leftmost panel shows the
creation of SNAs due to torus collision, namely, the two-
band quasiperiodic tori colliding with its unstable parent to
form a single-band attractor when the parameter f is in-
creased. The middle panels show the fractalization (GF)
route to the occurrence of SNAs. In this fractalization route

FIG. 4. Poincaré sections for the indirectly forced subsystem,
showing the evolution of the dynamics, from quasiperiodic tori to
chaotic attractors (CAs) through different routes to SNAs, keeping
€=0.25. The left panel shows the torus collision TC route: (a) torus
f=0.213 274, (b) SNA f=0.246 043, and (c) CA f=0.270 203.
Middle panel shows the fractalization GF route: (d) torus f
=0.680 644, (e) SNA f=0.627 326, (f) CA f=0.604 277. Right
panel shows the intermittency I route: (g) torus f=0.760 622, (h)
SNA f=0.809 220, (i) CA f=0.822 827. The Poincaré sections are
taken at x,=0, and ¢=mod(z,2).
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FIG. 5. Singular-continuous spectrum analysis of the {(y,);}
time series at €=0.25 and f=0.627 326, namely, panel (e) in Fig. 4.
(a) Plot of Y(a,N) vs N showing the power-law scaling; the slope is
~1.63. (b) The fractal path in the complex plane (Re[Y],Im[Y]).

for the creation of SNAs a quasiperiodic torus get increas-
ingly wrinkled with the change in forcing amplitude, and
becomes a strange set before becoming the chaotic attractor.
The right panel depicts the intermittency scenario [15].

In order to quantitatively confirm that the dynamics in
subsystem 2 is strange and nonchaotic, we use measures that
have been suggested earlier [1,17,18], in particular the
singular-continuous spectrum analysis [17]. We compute the
Fourier transform [19,20] as

N
Y(a,N) = 2, (vo)exp(i2mka), (2)
k=1

where « is proportional to the irrational driving frequency ()
and {(y,),} is the time series of the variable y, of length N.
The Fourier transform scales with N as [17]

Y(a,N)]* ~ N¥, 3)

where 1 <u <2 is a scaling exponent. The time evolution of
Y(a,N) can be represented by an orbit or a walker in the
complex plane (Re[Y(a,N)], Im[Y(a,N)]), and for a
singular-continuous spectrum (which is the case if the dy-
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FIG. 6. The schematic phase diagram for the coupled Rossler
system [Eq. (1)] in the f-€ parameter space. Here PS is the phase
synchronization region, I-PS represents the Imperfect phase syn-
chronization region, and the region where oscillators remain unsyn-
chronized is represented by N-PS. This figure is generated by cal-
culating the phase difference in a 100X 100 grid.

namics is strange) it implies that the walk on the plane
(Re[Y],Im[Y]) will be a fractal [19].

Shown in Fig. 5(a) is a plot of |Y(a,N)|*> vs N for a
=()/4 which has the scaling exponent = 1.63, and the walk
in Fig. 5(b) appears to be fractal, suggesting that the dynam-
ics of the subsystem is indeed strange and nonchaotic, in
consonance with the Lyapunov exponents. As has been
pointed out earlier, SNAs have a locally unstable but glo-
bally stable character [1,18,21]. The distribution of finite-
time Lyapunov exponents (FTLEs) can be used to further
characterize SNAs: the mean of the distribution is negative,
while the tail extends into the positive FTLE region (results
not shown here).

III. PHASE SYNCHRONIZATION

A number of recent studies have established that phase
synchrony is an important dynamical state in coupled sys-
tems [11,22]. Here we study the phase synchronization
which can be induced by an external quasiperiodic drive. For
Rossler oscillators given by Eq. (1), the phase is defined as
[23,24] ¢p;,~ arctan y,/x;, i=1,2. Shown in Fig. 6 are regimes
(marked PS) of phase synchronization in the parameter
space, namely, when the phase difference between two oscil-
lators | ¢, — ¢;| does not grow in time [22] while N-PS in Fig.
6 indicates regions where the oscillators are not synchro-
nized.

With increase in forcing amplitude, phase synchronization
is obtained at lower coupling strength. This result is of po-
tential utility in cases where direct access to the internal cou-
pling parameter of coupled natural systems is difficult: phase
synchronization can be tuned via appropriate external forc-
ing. To further illustrate this point, the evolution of phase
difference |¢,—¢,| with time is shown in Fig. 7 for two
different values of forcing strengths at €=0.035. As shown in
Fig. 7 at f=0.806 18 (N-PS) the phase difference remain
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FIG. 7. Phase difference between the oscillators of coupled
Rossler system with time for unsynchronous (f=0.806 18) and syn-
chronous (f=2.815 38) states at €=0.035.

unbounded with time, but as the forcing is increased while
keeping other parameters fixed, we observe a transition from
unsynchronized state to a phase synchronous state at f
=2.815 38 (PS).

Comparing Figs. 2 and 6 it can be seen that PS is possible
in either torus, SNA or when the motion is chaotic. Similarly,
when the oscillators are unsynchronized (i.e., N-PS regime in
Fig. 6) the subsystem dynamics can be regular, chaotic, or
strange nonchaotic as well.

In the region of imperfect phase synchrony, marked I-PS
in Fig. 6 the subsystems are phase locked, subject to occa-
sional slips. The value of |¢,— ;| varies during the evolu-
tion of the chaotic system [25], changing as in Fig. 8, in a
stepwise manner. Each step corresponds to a phase synchro-
nized (PS) state under a particular phase locking condition.
The jump between two consecutive steps occurs in (arbi-
trary) multiples of 7r. This is probably a consequence of the
quasiperiodic drive since in a periodically forced system [25]
the phase difference is always a fixed multiples of 7. The
inset of Fig. 8 shows an expanded view of the phase jump.

In the transition regime from PS to I-PS there is region of
coexistence of both these types of synchronization, with the
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FIG. 8. Phase difference with time in imperfect phase synchro-
nization state for €=0.15, and f=3.732 11. The inset figure shows
the expanded view of the selected region for a jump.
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FIG. 9. Phase difference between the (a) oscillators and (b)
coupled system and its copy at the same forcing, but starting at
different initial conditions, for SNAs in N-PS (e=0.035, f
=0.795 38) and PS (€=0.125, f=1.618 55).

basins of the two attractors being riddled (results not shown
here). In contrast, in quasiperiodically driven coupled maps
where several attractors coexist [26], smooth boundaries are
observed.

IV. SNA AND PHASE SYNCHRONY

Comparison of Figs. 2 and 6 suggests that PS or unsyn-
chronized (N-PS) dynamics can arise independent of the na-
ture of the dynamical state, namely, on tori, SNAs or on
chaotic attractors. In order to see the difference between
SNAs in PS and N-PS regimes of Fig. 6, we plot the phase
differences between the oscillators starting from different ini-
tial conditions in Fig. 9(a). These curves show that the SNAs
in PS regime are phase synchronized while SNAs in N-PS
regime are out of phase synchrony.

An important property of SNAs is that starting from dif-
ferent initial conditions, trajectories of a system, and its copy
subject to identical forcing also evolve in unison as a func-
tion of time [27]. We further examine this property of SNAs
in terms of the phase synchronization. &(¢) represents the
phase difference between the phase of coupled system and its
copy at the same forcing, but starting at different initial con-
ditions. Phase difference &(¢) is shown in Fig. 9(b) for the
SNAs in the PS and N-PS regimes. The curves in Fig. 9(b)
clearly show that for SNAs in both PS and N-PS regimes, the
phase difference between the system and its copy remains
bounded.

Similar effects are seen in a network of oscillators with
nearest-neighbor diffusive coupling with periodic boundary
conditions (we consider N=10) where one of them is subject
to quasiperiodic forcing. We consider the case where the
forced oscillator (w;=0.99) is not identical to the remaining
oscillators (w;=0.95, i=2,3,...,10). Figures 10(a)-10(c)
correspond to the torus, SNA, and chaotic attractor at f
=2.5, 9.761 65, and 10.781 65, respectively, for coupling
strength €=0.25. We have verified the presence of SNAs
along with other dynamics for all oscillators that are coupled
with the forced oscillator. Shown in Figs. 10(d) and 10(e) are
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FIG. 10. Poincaré sections of (a) torus at f=2.5, (b) SNA at f
=9.761 65, and (c) chaotic attractors at f=10.781 65. The phase
relations (d) |¢,— ;| and (e) 8(¢p) with time for SNA.

the phase differences between nearest neighbors |¢,— ¢, | and
the phase difference between the system and its copy (),
respectively, for the SNAs. These curves clearly confirm the
above mentioned stable-phase property of SNAs [where &(¢)
remains bounded] while the oscillators remain unsynchro-
nized (unbounded |, — ¢ ]).
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V. SUMMARY

The manner in which external modulation is transmitted
through coupling has been the subject of the present paper.
By focusing on the creation of strange nonchaotic dynamics,
it has been possible for us to examine the effect of driving in
an unambiguous manner since it is well-known that the qua-
siperiodic modulation of nonlinear dynamical systems fre-
quently leads to the formation of SNAs. Thus strange non-
chaotic motion that is seen in the subsystem dynamics must
arise through the quasiperiodic modulation that effectively
arises via the coupling.

We have studied a system of symmetrically coupled non-
linear oscillators, with a single one of them being subjected
to external quasiperiodic driving, and examine the dynamics
of another of the (sub)systems. We consider the case of two
oscillators in detail; results are also obtained for a larger
chain of oscillators (we have also studied networks of differ-
ent topologies [28]). The occurrence of strange nonchaotic
dynamics can be verified, and these also appear to be formed
through the different standard routes [13—16]. Identification
of strange nonchaotic dynamics in indirectly forced systems
can be of advantage in cases where it is not possible to di-
rectly access the subsystem of interest. Through suitable cou-
pling, therefore, it may thus still be possible to effect stabi-
lization and control.

Phase stability of coupled system over different initial
conditions under identical forcing is established as a general
property of SNAs, which occurs irrespective of the number
of coupled oscillators and different synchronization states
between the coupled oscillators.

We find that there are regimes of phase synchronization as
well as unsynchronized states. In particular, a quasiperiodic
drive can provide phase synchronization for lower coupling
strengths, while the possibility of imperfect phase synchro-
nization in coupled systems can have useful applications in,
for instance, controlling human cardiorespiratory activity
[29] or neuronal systems [30].
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